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¢ : STRUCTURAL PROPERTIES OF THE EQUILIBRIUM SOLUTIONS OF RICCATI EQUATIONS
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In this paper we study the behavior of certain solutions of the quadratic
matrix equa;ion
P A'K + KA - KBB'K = —pC'C (1)
as a function of a real variable p. Our main result is a new a priori bound
on the solutions, The methods we use draw freely on the variational interpretation
of the associated Riccati equation
- K =A'K + KA - KBB'K + pC'C

as well as the use of transform techniques and an elementary version of Parseval's
formula.

1. Preliminaries

Let A, B, and C be real, constant matrices of dimensions n by n, n by m

and q by n respectively. By a linear system we mean a pair of equations
‘% =Ax+Bujy=Cx | (2)

we also refer to the triple [A,B,C] as a linear system with the understanding

that A, B and C are the matrices appearing in equation (2). If the conditions

i) rank (B, AB, ..., An-lB) = n ‘
- ZASE FILE
- COPY

where "," indicates column partition and ";" a row partition are satisfied, we call

and

.11) rank (C; CA;,..;;CAn-l

[A,B,C] a minimal linear system. Let I be the identity matrix. We define the

spectral norm of a linear system as the minimum value of r > 0 such that the

Hermetian matrix inequality
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Ir? - B (-Iiw-A")"Yc'c(iw-) s 0 3 1= /T (3)

®

holds for all real w. If no such r exists the spectral norm is said to be infinite.

The linear system [A,B,C] will be considered together with a functional

n. = [w u'u + py'ydt (4)
0
whose minimization is to be considered. We take as known, the facts that under

the hypothesis that»[A,B;C] is a minimal linear system there is,

i) at most one solution such that A-BB'K has its eigenvalues in Res < 0O
ii) min [“ u'u + py'ydt exists for p > 0
u 0

ii1) if the minimum exists, min jm u'u + py'ydt = x'(O)le(O)
u 0

where Kl is a solution of equation (1).

Items ii) and iii) are widely known since Kalman [1]; for a proof of i) see [2].
A few additional preliminary results will be required.”

Lemma 1 : Let u be given by u(t) = Heth. Let y be given by
x(t) = Ax(t) + Bu(t) ; y(t) = Cx(t) 5 x(0) =0

Assume that the eigenvalues of A and F lie in the half-plane Re s < 0. Then

[“ y' (t)y(t)dt ¢ r2 [m u' (t)u(t)dt
0 0

vhere r is the spectral norm of [A,B,C].
Proof : Since x(0) is zero the Laplacé transform of y is § = RG. Using

Parseval's relation and the definition of the spectral norm we have

1o _
, fw y' (E)y(t)de = 5%; f+ ' (1) 6" (~1w) G (1w) u(iw) d
0 -

{0
L[ iy (PDu ()
£ T ) u(—.w)(r IDu(iw)dw .

. 'im
o, : ' )
= x Jw u' (t)u(r)dt
o )

Lemma 2 .« If [A,B,C] is a linear system with a finite spectral norm

then equaiidﬁi(l) has no real solution unless p 3 —rz.



Procf : We assume the contrary and look for a contradiction. Let Kl be-a real

solution..Manipulation of .equation (1) in the sfyle of Yacubovich, Kalman et al.
[3] gives '

-(-Is-A’)Kl + Kl(Is-A) + K BB'Kl = pC'C

1

Pre-and post-multiplying by (—.Is--A')-'l and (Is-A)’l respectively gives
-l ] —1 ] ml § —l
Kl(Is—A) + (-Is-A') Kl + (-Is-A'") KlBB Kl(Is—A) =
p(-Is-A") e c(s-a) 7

Now if we pre and post multiply by B' and B respectively and add I to each side we
obtain

[T+ R (-)T[I4R (s)] = I + OR'(=s)R(s)

where R(s) = C(Is—A)—lB and Rl(s) = B'Kl(Is~A)-lB. Since the left side is non-
negative for s =iw the right must be also. Hence unless p 1is greater than
-—r2 we can have no solution.

Lemma 3 : The quadratic equation
A'K + KA - KBB'K = 0 (5)

“has an invertible solution if and only if there exists an invertible solution of the
linear equation

L(Q) = QA' + AQ = BB' 6)

If the solution of the linear equation is unique and invertible then it is the
only invertible solution of the quadratic equation,

- Proof : If the quadratic equation has an invertible solution Kl then

“1,=1,0 o
1 1 L KA = BET.

On the other hand, if Q 1is an invertible solution of the linear equation then its

pre and post multiplication of A'K1+K A—KlBB'K by Kzl gives A K

inverse satisfies the quadratic equation. Uniqueness follows by the same reasoning.

2. The Case where A has its Eigenvalues in Re s < 0

Using these results it is possible to investigate the solutions of the

_quadratic matrix equation
KA + A'K - KBB'K = pC'C

and to relate them ;élghg solution of the linear equation



‘~. plane Re s < 0. Likewise we let K_(p) be the solution of equation (1) having the

KA + A'K = =-C'C
Our notation will be as follows. By K+(p) we mean the (unique) solution of

equation (1) having the property that the eigenvalues of A-BB'K lie in the half-

property that all the eigenvalues of A-BB'K lie in the half plane Re s > O,
Lemma 4 : Let [A,B,C] be a minimal linear system wiﬁh finite spectral norm r.

Assume there exists solutions K+ and K_ described above. Then K+(p) - K (p) 1is

positive definite for p > ~c2 and

= [A-BB'K_(p)]t (A-BB'K (0)]'t |
K, (p) - K_(p) = [[w e BB'e dt]
0 _

or alternatively
C 0 [A-BB'K_(p)It [A-BB'K_(0)]'t
K, () - K_(p) = ([ e BB'e dt]

-0

Proof : Direct manipulation shows that K+(p)—K_(p) satisfies

[K, (p)=K_(p) ] [A-BB'K_(0)] + [A~BB'K (p)]'[K,(p)-K_(p)] =

- [X (p)-K_(p)]BB' (K, (p)-K_(p)] (7

‘From Lemma 3 we gee that 1f there exists an invertible solution [K+(p)-K_(p)] it
must éatisfy equation (6) and conversely. However, it is easily seen that the given
expressions for K+(p)-K_(p) are well defined and invertible as long as A-BB'K(p) has
its eigenvalues in Re s < 0 using standard results from controllébility theory [2]. -

The following theorem gives a bound on the solution of equation (1) in térms
- of the solution of KA + A'K = -C'C gnd the spectral nofm r.

Theorem 1 : Let [A,B,C] be a miniﬁal linear system with spectral nornm r.
A;sume that the eigenvaiues of A lie in the half-plane Re s < 0. Then for p 3 -2

‘there exists é solution of KA+A'K-KBBK = - pC'C which has the property that

A—BB'K+(Q) has its eigenvalues in Re s < 0 and
' 2 ) " (8)
K;p 2 K, (p) > K p/(1+r"p) | -

where K, is the solution of AK, + K,A = -C'C. Moreover, there are no other

1 1 1
solutions of KA-+ A'K - KBB'K = - pC'C which have the property that A-BBK has its

eigenvalues in Re s < 0.



-

Proof : First of all observe that the upper bound on K+(p) is obvious from the

variational interpretation of K+(p) since by letting u be zero we obtain

f” gz + pyzdt = px'(O)le(O)
0

We know that for the minimal linear system (2) we have

min [w u' (tu(t) + py'(t)y(t)dt = x'(O)K+(p)X(0)
u ‘0

provided A-BB'K+(p) has its eigenvalues in Re s < 0, If u, and Yo denote the
optimal control and the optimal response then

[A-BB'K_(p)] [A-BB'K, (0)] .

y, = Ce . x(0) u = -B'K+(p) x(0)

Moreover, y, can be expressed using transforms as the sum of an initial condition

term and the effect of uo, i.e.

-1 def
¥, = C(Is-A) "x(0) + R(s)u _(s) = y,(s) +y,(s)

In terms of this notation =
x' (0)K, (p)x(0) = r ply; (©)+y () 1y, (E)+y, (£)] + u'(t)u(t)dt
0
Using the preceeding lemma we have

r2 Iw u' (t)u(t)de #Jm yé(t)yz(t)dt
0. 0

Also, from the known relationship between KA 4+ A'K = -C'C and quadratic integrals

we have

x'(O)KIX(O) = I: yi(t)yl(t)dt

Denote this last quantity by u2 and let v2 be defined by

v2 =‘Iw yé(t)yz(t)dt
0

Combining these results we have
' 2 ' -2,.2
x' (0K, (p)x(0) 2ou”-2[pl.lf yi(t)y,(©)de] + (p + r v

- 0

Now use the Schwartz inequality

rirt s et



| JO yi(t)yz(t)dtl 3 b/Jo yi(t)yl(t)dt't//f: v, (t)y,(t)dt

to obtain

x' (0)K _(p)x(0) > puz'- 2|p|ﬁv + (p+r'2)v2

Considering this as a function of v,'it has a minimum at v=u]p|/(p+r—2) and the
minimum value is pu2(1+pr2). Therefore it is clear that for p > —rz the in-

equalities
%' (0)K;x(0) > x' (00K, (0)x(0) > x' (0)K, x(0)p/ (L+pr?)

hold. - The matrix inequality follows immediately.

To study existance we observe that a solution exists for p > 0 and by differen-
tiation

( 21% K, (p)1[A-BB'K (p)] + [A-BB'K+(p)]'[-&% K, (] = C'C

d
35'K+(D) f: e

This differential equation can be integrated in the direction of decreasing p

or

[A—BB'K+(p)]t [A—BB'K+(Q)]'t

C'Ce dt

until A-BB'K+(p) has an eigenvalue with a zero real part. In viéw of inequality
(8), a solution K+(p) will therefore exist for p > —rz. To show that it also
exists for p 2 rz. Note that K+(p) is moaotone decreasing for p decreasing. By

‘lemma 4 K+(p) is bounded from below for p > —r2 hence

lm K (p) = K
p>-r2

exists and by continuity K satisfies eQuation (1) with p = r2.
Notice that the spectral norm of [-A,B,C] is the same as that of [ A,B,C] and

hence that there also. exists a solution of
(-A")K + K(-A) - KBB'K = —pC'C
which puts the eigenvalues.of -A-BB'K in Re s < 0. The negative of this solution

is X_(p).




3. The Case where the Spectral Norm is Finite

We now extend the results of the previous section to a wider class of systems.
The main result, Theorem 2, includes Theorem 1 as a special case but the proof makes

a full case of Theorem 1.
We need the following lemma to reduce the general case to Theorem 1.

Lemma 5 : If K, = K; is any solution of
KA+ A'RK -KBB'K =0 (9)
) o o o
And if K(p) is any solution of

A'K(p) + K(p)A - K(p)BB'K(p) = -pcC'
then
- ~RR! i “ar'r 1! _
[K(p): KOI[A BB Ko] + [A-BB Ko] [K(p) KO]
+ [K(p) - K IBB'[K(p) + K ] = -pC'C (10)

Proof : The proof is just a matter of expanding and using the definitions.
The details are omitted.

As we have seen, equation (5 ) can have at most one invertible solution

but it can have numerous non-invertible ones. In particqlar 0 is always a

solution as are K+(0) and K_(0). However, the particular solution K+(0) satisfies
- ) '__ ] 1 = -
K+(0)[A BB K+(O)] + [A-BB K+(0)] K+(O) K+(0)BBK+(O)

Since A—BB'K+(p) has its eigenvalues in Re s < 0 for p > 0 it will follow that
its eigenvalues lie in Re s < 0 for p = 0 unless the spectral norm of
[A—BB'K+(O),B,C] is infinite. This makes the following lemma of interest.

Lemma 6 : If K = K; is a solution of
KA+ A'K -KBB'K =20
o o o o
such that A—BB'KO has its eigenvalues in the half-plane Re s < 0 then the

spectral norms of {A,B,C] and [A—BB'KO,B,C] are the same.

Proof -: From lemma 5 see that if Ko satisfies the hypothesis then

K(A-BBK ) + (A-DB'K )'K - KBB'K = ~pC’C (11)

has a solution if and only if there exists a solution of




KA + A'K - KBB'K = —pC'C
Combining Lemma 4 and Theorem i we see that this equation has a solution if and only
if p 3 —r2 whéré r is the spectral norm of [A,B,C]. Since'the.same is true for
“— equation (11) the spectral norm of [A-BB'KO,B,C] must also be rz.
Putting these lemmas together with Theorem 1 gives the following generalization.
of Theorem 1.
Theorem é : Let [A,B,C] be a minimal linear system with spectral norm r.

Then for p > er there exists a solution of equation (1) and
| 2
Kyp > K (p) - K, (0) 3 K p/(1l+r"p)

where Kl is the solution of [A-BB'K+(0)]'K1+K1[A—BB'K+(O)] = -CC. Moreover, there
are no other solutions of KA + A'K - KBB'K = -pC'C which have the property that
A-BB'K has its eigenvalues in Re s < 0.

4. Additional Comments

The results given here give the following (still incomplete) picture of the
solutions of equgtion (1) under the hypothesis that A has no eigenvalue with zero
‘real part.

1) There exist real solutions if and only if p 3 r"2

ii) For p > r2 there 1s exactly one solution such that A-BBfK has its eigenvalues
in Re s < 0 and exactly one solution such that A-BB'K its eigenvalues in.
Re s > 0 |
i1i) K+(p) - K (p) 30
Figure 1 suggests the ﬁain qualitative features and illustrates the bounés. 0f
céurse similar bounds hold for K (p).
' We note Ehaé our results provide a new proof of certain4important theorems on
tﬁe absence of conjugate_points [5]. Moreover, our proof doés not use any results

on spectral factorization of rational matrices.

Additional refinements of these ideas can be found in Canales' thesis [4].
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Figure 1 : A suggestive picture of the general behavior of K+(p) and K_(p).
If K is one dimensional then K+(p) and K_(p) join at o =2,
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